Invariant Control Sets on Flag Manifolds and Ideal Boundaries of Symmetric Spaces

نویسنده

  • J. D. Lawson
چکیده

Let G be a semisimple real Lie group of non-compact type, K a maximal compact subgroup and S ⊆ G a semigroup with nonempty interior. We consider the ideal boundary ∂∞(G/K) of the associated symmetric space and the flag manifolds G/PΘ . We prove that the asymptotic image ∂∞(Sx0) ⊆ ∂∞(G/K), where x0 ∈ G/K is any given point, is the maximal invariant control set of S in ∂∞(G/K). Moreover there is a surjective projection π : ∂∞(Sx0) → ⋃ Θ⊆Σ CΘ , where CΘ is the maximal invariant control set for the action of S in the flag manifold G/PΘ , with PΘ a parabolic subgroup. The points that project over CΘ are exactly the points of type Θ in ∂∞ (Sx0) (in the sense of the type of a cell in a Tits Building).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex functions on symmetric spaces and geometric invariant theory for weighted configurations on flag manifolds

3 Convex functions on symmetric spaces 11 3.1 Geometric preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Metric spaces with curvature bounds . . . . . . . . . . . . . . 11 3.1.2 Hadamard spaces . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.3 Symmetric spaces of noncompact type . . . . . . . . . . . . . 15 3.1.4 Auxiliary results . . . . . . . . . . . . . . . ....

متن کامل

On Lorentzian two-Symmetric Manifolds of Dimension-fou‎r

‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.

متن کامل

Steepest descent on real flag manifolds

Among the compact homogeneous spaces, a very distinguished subclass is formed by the (generalized) real flag manifolds which by definition are the orbits of the isotropy representations of Riemannian symmetric spaces (sorbits). This class contains most compact symmetric spaces (e.g. all hermitian ones), all classical flag manifolds over real, complex and quaternionic vector spaces, all adjoint ...

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

Riemannian Symmetries in Flag Manifolds

Flag manifolds are in general not symmetric spaces. But they are provided with a structure of Z2 -symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. The conditions for a metric adapted to the Z2-symmetric structure to be naturally reductive are detailed for the flag manifold SO(5)/SO(2)× SO(2)× SO(1).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003